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1 Introduction

The program of counting supersymmetric states in the context of AdS/CFT correspondence

is an important one as it helps in verifying the AdS/CFT correspondence in its BPS

sector. In recent times a lot of progress has been made, both from the bulk and the

boundary point of view, in cases where the states under consideration preserve at least

four supersymmetries.

In the well studied maximally supersymmetric version of the AdS/CFT correspon-

dence [1], the bulk theory is the type IIB string theory on AdS5 × S5 background and

the corresponding boundary theory is the 4-dimensional N = 4 U(N) SYM on S3 × R.

In this case any state on the string theory side can be specified by six conserved charges
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(E,S1, S2, J1, J2, J3) where (E,S1, S2) denote the energy and the two angular momenta

in global AdS5, and (J1, J2, J3) denote the three independent angular momenta on S5,

namely, the R-charges. The BPS states satisfy a linear relation among these six charges.

On the bulk side some of the bosonic BPS states with non-zero charges (J1, J2, J3) at the

classical level are given by finite-energy D3-brane configurations in AdS5 × S5 [2–8]. They

turn out to have two independent and equivalent description in terms of the Mikhailov

giant gravitons [5] and the dual-giant graviton configurations of [7]. Their quantization

was carried out in [7, 9, 10] and shown to reproduce the partition function of chiral pri-

maries [11] obtained from the bosonic fields on the CFT side. For earlier work leading to

the quantization of giants and dual-giants in AdS5 × S5, see [12–15] and see [16, 17] for

giants in other contexts.1

However, such states are not useful in making progress with the problem of accounting

for the entropy of five dimensional supersymmetric black holes of [19, 20] (see also [21] for

more general black holes). These black hole solutions can be lifted to black holes in AdS5×
S5 background of the type IIB string theory. They preserve only two supersymmetries [23]

and necessarily carry non-zero angular momenta (S1, S2). The microstates of these black

holes will be the 1/16-BPS states in type IIB string theory on AdS5 × S5 or equivalently

the 1/16-BPS states of d = 4, N = 4, U(N) SYM on S3 × R. Recently some important

progress has been reported in [24] where the partition function of 1/16-BPS operators

made out of the bosonic fields in N = 4 U(N) SYM, has been written down in some

cases. These CFT states should be some of the microstates of the 1/16-BPS black holes.

It is of interest to ask if the results of [24] can be reproduced by counting an appropriate

set of 1/16-BPS states in type IIB theory on the AdS5 × S5 background with all possible

charges (S1, S2, J1, J2, J3). Of course there already exists a nice description of D3-brane

configurations of AdS5 × S5 with at least two supersymmetries by Kim and Lee [8]. Their

quantization, however, remains an open problem (see [24] for some approxmimate results).

So far, the only BPS D3-branes with non-zero S1 and S2 whose quantization has been

achieved are described in terms of the 1/8-BPS configurations of 1/2-BPS giant gravi-

tons [7]. Their partition function turns out to be the same as that of the configurations of

arbitrary number of bosons in a 3-dimensional harmonic oscillator with the restriction that

the level number of one of the oscillators be less than or equal to N . It is interesting to ask

if the duality between giants and the dual-giants that seems to exist (see for instance [25])

in the non-zero (J1, J2, J3) sector also exists in the (S1, S2, J1) sector or not. For this

one would like to know if one can recover the partition function of the (S1, S2, J1) states

from some dual-giant like objects. In this paper we show that the wobbling dual-giants

of [6] with quantum numbers (S1, S2, J1) give rise to the same partition function as the one

computed in [7] from the giant perspective.

The derivations of supersymmetric giants in [5, 6, 8] start with spinors in an auxiliary

12-dimensional Lorentian geometry with two time-like directions:

C
1,2 × C

3 with coordinates (Φ0,Φ1,Φ2;Z1, Z2, Z3) , (1.1)

1See also [18] for recent work on brane webs in supergravity.
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where AdS5 × S5 is given by two real conditions

− |Φ0|2 + |Φ1|2 + |Φ2|2 = −l2 and |Z1|2 + |Z2|2 + |Z3|2 = l2 . (1.2)

Though a very effective method for AdS5 × S5, it does not extend to cases such as the

β-deformed backgrounds where such an embedding into a more tractable ambient space is

not readily available.

So it is desirable to develop techniques which will enable one to obtain the supersym-

metric solutions using more direct means. With this motivation, in the first part of this

paper, we reexamine the 1/16-BPS probe D3-branes in AdS5 × S5. We start directly with

the Killing spinor of AdS5×S5 and impose a set of projection conditions which reduces the

number of independent components of the Killing spinor to just two. Using the κ-projection

condition on the world-volume of a generic D3-brane embedding, we derive the full set of

BPS equations for the embedding coordinates. These are given in terms of a set of vanish-

ing conditions on some four-forms in AdS5×S5 geometry. As we shall show, our procedure

also makes manifest the calibrating forms for giant and dual-giant gravitons [26]. We illus-

trate that the Mikhailov giants [5] and the wobbling dual-giants of [6, 8] are solutions to

our set of BPS equations and compare our analysis with the results of Kim and Lee [8].

In the second part of this paper we analyze particular classes of wobbling dual-giants

carrying non-zero (S1, S2, J1) charges. We give a prescription to implement the stringy

exclusion principle generalizing the one for the 1/2-BPS dual-giants [7] to the (S1, S2, J1)

dual-giant case. To quantize such classes of classical solutions one first computes the

symplectic structure on their parameter space treated as a classical phase space. The

symplectic form on this phase space can be derived using the covariant phase space methods

of Crnkovic, Witten and Zuckerman [27, 28]. This technique has been used successfully

in [10] to compute the symplectic structure on the configuration space of the Mikhailov

giants which turned out to be the complex projective space CP
n where n is a regulator.

Here we suitably adapt their techniques to the (S1, S2, J1) dual-giants.

We show that the moduli-space of these wobbling dual-giants is generically non-

compact. We argue that the configuration space of these objects as a phase space can be

mapped to the hyperbolic version of the complex projective space, which we denote by C̃P
n

where n is again a regulator. The symplectic structure turns out to be the the kahler form on

these non-compact Kahler manifolds. We quantize these spaces using the methods of (holo-

morphic) geometric quantization. After removing the regulator, we are able to recover the

partition function of the (S1, S2, J1) giants obtained earlier in [7], thereby giving evidence

for the existence of a duality between the giants and dual-giants in this 1/8-BPS sector.

Organization of the paper. In section 2, we use the explicit form of the Killing spinor in

AdS5×S5 and analyze the kappa symmetry conditions for embedding supersymmetric D3-

branes in the background. We obtain the constraints on the pull-back of space-time 4-forms

that lead to classical 1/16-supersymmetric solutions. We derive the well known classical

solutions that corresspond to the case of giants and dual-giants in a covariant manner.

We then study dual-giants in section 2.4 and derive the expressions for the charges that

follow from the combined DBI and Wess-Zumino terms in the action for a probe D3-brane.
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Our discussion is very general in this section and not dependent on specific solutions to

the equations of motion. In section 3, we identify the classical solution space with the

phase space of the classical theory and compute the symplectic structure on this phase

space for a few chosen examples. This will prove crucial in section 4, when we turn to

the geometric quantization of the phase space and obtain the partition function of the

(S1, S2, J1) dual-giants. In section 5, we discuss possible future applications of our present

work and mention some relations of our work to the existing literature. Some technical

details pertaining to the computation of charges are collected in appendix A. We collect

some basic facts regarding the hyperbolic space C̃P
m

and discuss holomprhic quantization

of this Kähler manifold in appendix B.

2 Classical description of 1

16
-BPS giants

In this section we derive the BPS equations for a general configuration of a D3-brane

preserving at least 2 of the supersymmetries of AdS5 × S5 by analyzing the κ-projection

conditions for the D3-brane world-volume theory. Then we solve them restricting our

attention to giant-like and dual-giant-like configurations.

2.1 The 1/16-BPS equations

We begin by studying the kappa-projection conditions that ensure supersymmetry for a

D3-brane embedded in AdS5 × S5. For this we take the metric on AdS5 × S5 written in

global coordinates to be

ds2

l2
= −

(
1 +

r2

l2

)
dφ2

0 +
dr2

r2 + l2
+
r2

l2
(
dθ2 + cos2 θdφ2

1 + sin2 θdφ2
2

)

+dα2 + sin2 αdξ21 + cos2 α
(
dβ2 + sin2 βdξ22 + cos2 βdξ23

)
, (2.1)

where φ0 = t
l . We choose the following frame for the AdS5 part of the metric

e0 = l V dφ0 −
r2

l
(cos2 θdφ1 + sin2 θdφ2),

e1 = V −1/2 dr , e2 = r dθ,

e3 = r V 1/2(cos2 θ dφ01 + sin2 θ dφ02)

e4 = r cos θ sin θ dφ12 , (2.2)

where V = 1 + r2/l2 and φij = φi − φj. Here the ranges of various coordinates are:

−∞ < φ0 < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ π/2, 0 ≤ φ1, φ2 < 2π. This frame makes manifest

the fact that AdS5 can be written as a U(1) Hopf fibration: the base being the hyperbolic

Kähler manifold C̃P
2
, spanned by the {r, θ, φ01, φ02} coordinates, and the fibre along the

φ0 + φ1 + φ2 direction. For the S5 part, we choose the frame

e5 = l dα, e6 = l cosαdβ,

e7 = l cosα sinα (sin2 β dξ12 + cos2 β dξ13),

e8 = l cosα cos β sin β dξ23,

e9 = l (sin2 α dξ1 + cos2 α sin2 β dξ2 + cos2 α cos2 β dξ3). (2.3)
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where ξij = ξi − ξj and the ranges of the coordinates are: 0 ≤ α, β ≤ π/2, 0 ≤ ξi < 2π.

Again the choice of frame exhibits the fact that S5 is a Hopf fibration over the Kähler

manifold CP
2 spanned by the {α, β, ξ12, ξ13} coordinates, with the fibre direction along

ξ1 + ξ2 + ξ3.

The Killing spinor for the AdS5×S5 background adapted to the above frame is given by

ǫ = e−
1
2
(Γ79−iΓ5 γ̃) αe−

1
2
(Γ89−iΓ6γ̃)β e

1
2
ξ1Γ57 e

1
2
ξ2Γ68 e

i
2
ξ3Γ9 γ̃

×e 1
2

sinh−1( r
l
) (Γ03+iΓ1 γ) e

1
2
θ (Γ12+Γ34) e

i
2
φ0 Γ0 γ e−

1
2
φ1Γ13 e−

1
2
φ2Γ24 ǫ0 (2.4)

where ǫ0 is an arbitrary 32 component weyl spinor satisfying Γ0 · · ·Γ9ǫ0 = −ǫ0 and γ =

Γ01234, γ̃ = Γ56789 as in [7]. We seek the full set of BPS equations for D3-branes in AdS5×S5

which preserve two supersymmetries out of the full set of thirty two. Clearly this choice

is non-unique. Without loss of generality we could choose them to be the ones obtained

in [7]. So we take superymmetries preserved by the D3-brane to be those that survive

the projections

Γ57ǫ0 = Γ68ǫ0 = iǫ0 , Γ09ǫ0 = −ǫ0 , Γ13ǫ0 = Γ24ǫ0 = −iǫ0 . (2.5)

With these projections the killing spinor simplifies to

ǫ = e
i
2
(φ0+φ1+φ2+ξ1+ξ2+ξ3)ǫ0 . (2.6)

Next we seek the equations that any D3-brane should satisfy to preserve (at least) these

two supersymmetries. The ansatz we take for the D3-brane is the most general one, such

that all the coordinates (t, r, θ, φ1, φ2, α, β, ξ1, ξ2, ξ3) are functions of the world-volume co-

ordinates (τ, σ1, σ2, σ3). The world-volume gamma matrices are

γi = e
a
i Γa (2.7)

where e
a
i = eaµ ∂iX

µ, with i ∈ {τ, σ1, σ2, σ3}, is the pull-back of eaµ onto the world-volume.

Then we have

γτσ1σ2σ3 = e
a
0 e

b
1 e

c
2 e

d
3 Γabcd . (2.8)

The kappa projection condition on the worldvolume of the D3-brane is given by

γτσ1σ2σ3ǫ = ±i
√
− deth ǫ , (2.9)

where the sign distinguishes a D3-brane from an anti-D3-brane. To obtain the equations

that the κ-projection condition implies we substitute the spinor in (2.6) into (2.9) and

simplify the left hand side of (2.9) using the projections (2.5) untill it reduces to a linear

combination of the independent column matrices of the type Γab···ǫ0. Such column matrices

naturally fall into two types. Ones in which at least one Γ-matrix multiplies ǫ0 and other

where no Γ-matrix (but only the identity matrix) multiplies ǫ0. Then we simply have to

set the coefficient of each such independent column matrix to zero.2

2This technique was first used in [7], albeit in a much simpler context.
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In order to write down the BPS equations in a compact form, let us define the complex

one-forms

E1 = e
1 − ie3 E2 = e

2 − ie4 E5 = e
5 + ie7 E6 = e

6 + ie8 , (2.10)

along with the real 1-forms

E0 = e
0 + e

9 and E0̄ = e
0 − e

9 (2.11)

as well as the two-forms

ω̃ = e
13 + e

24 = − i

2

(
E1 ∧ E1 + E2 ∧ E2

)
≡ ω

fCP
2

ω = e
57 + e

68 =
i

2

(
E5 ∧ E5 + E6 ∧ E6

)
≡ ω

CP
2 . (2.12)

The 2-forms are the pull-backs onto the worldvolume of the brane, of the Kähler forms

on the respective base manifolds CP
2 and C̃P

2
when S5 and AdS5 are written as Hopf-

fibrations. With these definitions, the BPS equations that follow from (2.9) by setting the

coefficient of a column matrix of the type Γab···ǫ0 with at least one Γ-matrix can be written

in the following compact form:

EABCD = 0

(e09 + i (ω̃ − ω)) ∧ EAB = 0 for A,B = 0, 1, 2, 5, 6 . (2.13)

Substituting these equations into the kappa projection equation (2.9), we get the equation

e
09 ∧ (ω̃ − ω) +

i

2
(ω̃ − ω) ∧ (ω̃ − ω) = ±

√
− deth (2.14)

as the coefficient of ǫ0 (with no Γ-matrix multiplying it). We still need to check if the

equations (2.13) are sufficient to satisfy this equation identically for either sign on the

right hand side. To simplify the right hand side, we first note the identity

− deth = − det
ij




9∑

m,n=0

e
m
i e

n
j ηmn




= −
∑

mi<ni<pi<qi

(ǫi1j1k1l1
e
m1
i1

e
n1
j1

e
p1

k1
e
q1

k1
) (ǫi1j2k2l2

e
m2
i2

e
n2
j2

e
p2

k2
e
q2

l2
)ηm1m2ηn1n2ηp1p2ηq1q2

=
∑

a<b

e
09ab

e
09ab +

∑

a<b<c

(e0abc
e
0abc − e

9abc
e
9abc) −

∑

a<b<c<d

e
abcd

e
abcd . (2.15)

Using the useful identity

e
abc[d

e
ef ]ab = 0 , (2.16)

where a, b need not be summed, one can rewrite each of the terms in the determinant in

terms of the pullback of the complex one-forms EA as follows:
∑

a<b

e
09ab

e
09ab =

∑

A<B

|e09 ∧ EAB|2 + |e09 ∧ (ω̃ − ω)|2

∑

a<b<c

e
∗abc

e
∗abc =

∑

A<B<C

|e∗ ∧ EABC |2 +
∑

A

|e∗ ∧ EA ∧ (ω̃ − ω)|2 , where * ∈ {0, 9}

∑

a<b<c<d

e
abcd

e
abcd = |E1256|2 +

∑

A<B

|EAB ∧ (ω̃ − ω)|2 +
1

4
|(ω̃ − ω) ∧ (ω̃ − ω)|2 . (2.17)
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Now, using the BPS conditions (2.13), one can check that the determinant reduces to

− deth =
(
e
09 ∧ (ω̃ − ω)

)2 − 1

4
((ω̃ − ω) ∧ (ω̃ − ω))2 . (2.18)

Substituting this expression into (2.14) we see that it can not be satisfied without supplying

further conditions. There are two ways we can solve the equation (2.14) which we refer to

as “time-like” and “instantonic”.

For “time-like” D3-branes we further impose the condition

(ω − ω̃) ∧ (ω − ω̃) = 0 . (2.19)

Then −(deth) reduces to a complete square and from (2.14) we have

e
09 ∧ (ω̃ − ω) = ±

∣∣e09 ∧ (ω̃ − ω)
∣∣ = ±dvol4. (2.20)

This is solved for either branes or anti-branes depending on the sign of |e09 ∧ (ω̃ − ω)|.
Note that we have identified the 4-volume element on the world volume of the D3-brane.

We will point out its relation to the calibration forms on giant gravitons and dual-giant

gravitons in the discussion section.

It is amusing to note that our analysis suggests another class of supersymmetric “in-

stantonic” branes if we choose

e
09 ∧ (ω̃ − ω) = 0 . (2.21)

In this case the world-volume is given by the pull-back of i
2 (ω̃ − ω) ∧ (ω̃ − ω) which does

not have a component along the time-like 1-form e0. As we will see shortly, all the known

solutions of giants and dual-giants are in the “time-like” case. Therefore we shall restrict our

analysis to the time-like D3-branes and analyze the BPS equations (2.13) along with (2.19)

for solutions.

One can immediately find two classes of solutions to the BPS equations that are usually

referred to as either giants or dual-giants. Giants are those configurations that are point-

like in the {0, 1, 2, 3, 4} directions, so that the pullback of a form with more than one

index from this set onto the world-volume vanishes. With this restriction, the list of BPS

conditions for giants simplifies to

e
09 ∧ E56 = 0

(e0 + e
9) ∧ E56 ∧

{
E1

E2

}
= 0





e
0 + e

9

E5

E6





∧





e
0 + e

9

E1

E2





∧ ω = 0

ω ∧ ω = e
5678 = 0 . (2.22)
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Similarly for dual-giants, whose world-volume is point-like along the {5, 6, 7, 8, 9} directions,

the BPS conditions are

e
09 ∧ E12 = 0

(e0 + e
9) ∧ E12 ∧

{
E5

E6

}
= 0





e
0 + e

9

E5

E6





∧





e
0 + e

9

E1

E2





∧ ω̃ = 0

ω̃ ∧ ω̃ = e
1234 = 0 . (2.23)

We will present explicit solutions for these conditions in the following sections. There

are four classes of 1/8-BPS solutions: these can be classified by their quantum numbers

and whether they satisfy (2.22) or (2.23). Let us mention these briefly before we proceed.

• (J1, J2, J3) dual-giants satisfy (2.23), with spins only along the S5. These were quan-

tized in [7] and it was shown that their partition function matches exactly with the

partition function of the Mikhailov giants obtained in [10].

• (J1, J2, J3) giants satisfy (2.22) and have spins only along the S5 directions. These

are the familiar Mikhailov giants [5]. The quantization of their configuration space

has been carried out in [10].

• (S1, S2, J1) dual-giants (or wobbling dual-giants [6]), with two spins in AdS5 and one

spin along the S5 will be the main focus of our paper. The configuration space of

these dual-giants and its quantization is an open problem and will be addressed in

the following sections. As expected, the partition function obtained coincides with

the partition function obtained for the (S1, S2, J1) giants in [7].

• (S1, S2, J1) giants (or spinning giants [7, 15, 29]) satisfy (2.22) and have two spins

in the AdS5 directions (φ1, φ2) and one spin along the ξ1 direction in the S5. Their

quantization has been carried out in [7].

Apart from these 1/8-BPS states, we will also discuss generalizations of these to 1/16-

BPS configurations that describe a single giant or a single dual-giant. We will comment

briefly on their quantization problem in the discussion section.

2.2 Dual-giant solutions

The dual-giant is a generic term to describe D3-brane solutions which are point-like in the

S5 at any instant of the world-volume time. As a preliminary check on our BPS equations,

let us affirm that the spherical dual-giant gravitons that have been discussed in [7] are

solutions to our BPS equations (2.23). This will be useful to our more general discussion

to follow.
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2.2.1 (J1, J2, J3) dual-giant

We use the ansatz φ0 = τ, θ = σ1, φ1 = σ2, φ2 = σ3. Using these, one can write the

pullbacks of the various vielbeins as follows:

e
0 = lV dτ − r2

l
(cos2 σ1dσ2 + sin2 σ1dσ3) e

1 =
ṙdτ

V
1
2

, e
2 = rdσ1 ,

e
3 = rV

1
2 (dτ − cos2 σ1dσ2 − sin2 σ1dσ3) , e

4 = r cosσ1 sinσ1(dσ2 − dσ3) ,

e
5 = lα̇dτ , e

6 = l cosαβ̇dτ , e
7 = l cosα sinα(ξ̇1 − sin2 βξ̇2 − cos2 βξ̇3)dτ ,

e
8 = l cosα cos β sin β(ξ̇2 − ξ̇3)dτ , e

9 = l(sin2 αξ̇1 + cos2 α sin2 βξ̇2 + cos2 α cos2 βξ̇3)dτ .

Consider the last equation e
1234 = 0 in (2.23) we find:

r3 ṙ sinσ1 cos σ1 dτ ∧ dσ1 ∧ dσ2 ∧ dσ3 = 0 . (2.24)

This is solved only for ṙ = 0. Thus, we find that

e
1 = 0 . (2.25)

The first two equations in (2.23) are automatically satisfied using our ansatz. The third

equation, (e0 + e
9) ∧E1 ∧ ω = 0, using ṙ = 0, reduces to the equation

1 + sin2 α ξ̇1 + cos2 α sin2 β ξ̇2 + cos2 α cos2 β ξ̇3 = 0 . (2.26)

Since we expect the solution to exist for arbitrary values of α and β, the solution is given by

ξ̇i = −1 ∀ i ∈ {1, 2, 3} . (2.27)

The remaining non-trivial equations lead to the conditions (here, we have used (2.27))

{
α̇ dτ

cosα β̇ dτ

}
∧ (r3 V

1
2 sinσ1 cos σ1) dσ ∧ dσ2 ∧ dσ3 = 0 , (2.28)

Thus, the full set of conditions that follow from our BPS equations is

ṙ = α̇ = β̇ = 0 and ξ̇1 = ξ̇2 = ξ̇3 = −1 . (2.29)

We have thus recovered the conditions for supersymmetry derived in [7] using our BPS

equations (2.23). The solution to these equations is

r = r(0), α = α(0), β = β(0), ξi = ξ
(0)
i − τ (2.30)

with six constant parameters r(0), α(0), β(0), ξ
(0)
i as in [7]. This provides a good first con-

sistency check of our equations.
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2.2.2 (S1, S2, J1) “wobbling” dual-giants

We now try to generalize the solutions in the previous subsection and solve the list of BPS

conditions for particular classes of dual-giants satisfying (2.23). The general solution of the

BPS conditions will be given by three complex conditions that will lead to a four dimen-

sional world-volume [8]. Let us consider one of the constraints and let it be a completely

general function of all the coordinates

F (r, θ, α, β, φ0, φ1, φ2, ξ1, ξ2, ξ3) = 0 . (2.31)

This leads to the differential constraint

P


Fr dr + Fθ dθ + Fα dα+ Fβ dβ +

∑

i=0,1,2

Fφi
dφi +

∑

i=1,2,3

Fξi
dξi


 = 0 (2.32)

where P denotes pullback onto the world-volume. It is possible to rewrite each of these

one forms in terms of the complex one-forms (2.10) using the explicit frames used in (2.2)

and (2.3). This leads to the differential constraint

[
Fρ − i

(
tanh ρFφ0 + coth ρ(Fφ1 + Fφ2)

)]
E1+

[
Fρ + i

(
tanh ρFφ0 + coth ρ(Fφ1 + Fφ2)

)]
E1

+
1

sinh ρ

[
Fθ + i

(
tan θFφ1 − cot θFφ2

)]
E2+

1

sinh ρ

[
Fθ − i

(
tan θFφ1 − cot θFφ2

)]
E2

+
[
Fα − i

(
cotαFξ1 − tanα(Fξ2 + Fξ3)

)]
E5+

[
Fα+ i

(
cotαFξ1− tanα(Fξ2 + Fξ3)

)]
E5

+
1

cosα

[
Fβ − i

(
cot βFξ2 − tan βFξ3)

)]
E6+

1

cosα

[
Fβ + i

(
cot βFξ2 − tan βFξ3)

)]
E6

+


 ∑

i=0,1,2

Fφi
+
∑

i=1,2,3

Fξi


(e0+e

9
)

+


 ∑

i=0,1,2

Fφi
−
∑

i=1,2,3

Fξi


 (e0 − e

9
)

= 0 . (2.33)

Here we have defined r = l sinh ρ . There are two other equations for the other two

constraint functions as a result of which the pullback of three of the one-forms can be

eliminated in favour of the remaining ones before substituting into the BPS equations.

For simplicity we will assume that the dual-giant under consideration is such that the

following pullback conditions are trivially satisfied:

E5 = E6 = 0 . (2.34)

This basically reduces to the equations

α̇ = β̇ = 0 , ξ̇1 = ξ̇2 = ξ̇3 (2.35)

which are part of the BPS equations for the (J1, J2, J3) dual-giant discussed in the previous

subsection. The solution to the equations (2.34) is α = α(0), β = β(0), ξij = ξ
(0)
ij . The

constants {α(0), β(0), ξ
(0)
12 , ξ

(0)
13 } parametrize the points on the base CP

2 of S5 which in turn

parametrize the relevant maximal circles on S5. We will choose our dual-giants to have

only one angular momentum quantum number in the S5. This amounts to fixing the

parameters {α(0), β(0), ξ
(0)
12 , ξ

(0)
13 } which picks a unique maximal circle on S5. Since these

– 10 –
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are two one-form conditions, we have already used two of the three constraint equations.

Therefore one can substitute (2.34) into (2.33), solve for (e0 + e
9) and substitute into the

BPS equations in (2.23).

The coefficients of the 4-forms that do not vanish due to the BPS conditions lead to

non-trivial constraints on the function F . In our case, this leads to the equations (these

turn out to be simply the coefficients of the anti-holomorphic one-forms in (2.33)):

Fρ + i
(
tanh ρFφ0 + coth ρ (Fφ1 + Fφ2)

)
= 0

Fθ − i
(
tan θ Fφ1 − cot θ Fφ2) = 0
∑

i=0,1,2

Fφi
−
∑

i=1,2,3

Fξi
= 0 . (2.36)

The solutions to the first two equations is given by

F =
∑

m0,m1,m2

Cm0,m1,m2(α, β, ξi)(coshρ)
m0(sinhρ cos θ)m1(sinhρ sin θ)m2eim0φ0+im1φ1+im2φ2 =0 .

(2.37)

The last equation requires that

∑

i=1,2,3

∂ξi
Cm0,m1,m2 = i (m0 +m1 +m2)Cm0,m1,m2 . (2.38)

The solution is most easily written in terms of the complex variables

Φ0 = l cosh ρ eiφ0 Φ1 = l sinh ρ cos θ eiφ1 Φ2 = l sinh ρ sin θ eiφ2 . (2.39)

These are well-defined coordinates on AdS5 that lead to the Bergmann form of the metric.

The Φi satisfy the relation

− |Φ0|2 + |Φ1|2 + |Φ2|2 = −l2 . (2.40)

In terms of these coordinates, any holomorphic function F (Φ0,Φ1,Φ2) satisfies the first two

differential equations. However, we still have to solve for the last constraint (2.38). To do

so, we first introduce analogous complex coordinates on the S5 part of the metric as follows:

Z1 = l sinαeiξ1 Z2 = l cosα sin β eiξ2 Z3 = l cosα cosβ eiξ3 . (2.41)

such that

|Z1|2 + |Z2|2 + |Z3|2 = l2 . (2.42)

In terms of these variables, one can check that the α = π
2 solution to the (2.34) is given by

Z2/Z1 = Z3/Z1 = 0 . (2.43)

Since Z1 6= 0, it follows that Z2 and Z3 are set to zero while Z1 is just a phase (α = π
2 ).

The solution to (2.38) is therefore given by

Cm0,m1,m2 = ei(m0+m1+m2)ξ1 . (2.44)
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Using the complex variables Φi and Zi, one can therefore rewrite the full solution to the

BPS equations in the form of the three equations

F (Z1Φ0, Z1Φ1, Z1Φ2) = 0 and Z2/Z1 = Z3/Z1 = 0 . (2.45)

However this is not yet the final set of dual-giant solutions with (S1, S2, J1) charges

we are after. We need to impose the condition that at a given fixed world-volume time

the dual-giant is a point on the S5. For this the spatial section of the brane at a fixed

world-volume time has to be a 3-dimensional space-like surface in AdS5. This is not always

the case for all of the solutions given above in (2.45). Even though the solutions which are

not of this type might be interesting on their own, we would like to impose this condition

by hand. Such solutions can be written as the following one-parameter set of 3-surfaces

F (Φ0e
−i τ

l ,Φ1e
−i τ

l ,Φ2e
−i τ

l ) = 0 , ei
τ
l Zi = Z

(0)
i for i = 1, 2, 3 (2.46)

intersected with |Φ0|2 − |Φ1|2 − |Φ2|2 = l2 and |Z1|2 + |Z2|2 + |Z3|2 = l2 along with the

condition that the intersection of F (Φ0,Φ1,Φ2) = 0 with |Φ0|2−|Φ1|2−|Φ2|2 = l2 is space-

like. We call these solutions the “wobbling dual-giants” [32]. Choosing Z
(0)
2 = Z

(0)
3 = 0

is the (S1, S2, J1) dual-giant which will be explored further later on. We note that the

dual-giants in (2.46) are not the most general ones though they carry all five charges

(S1, S2, J1, J2, J3).

A 1/2-BPS (S1, S2, J1, J2, J3) dual-giant. The simplest case of the single dual-giant

graviton in (2.30) is given by the equations

Φ0Z1 = d1, Φ0Z2 = d2 and Φ0Z3 = d3 . (2.47)

The complex parameters di can be easily written in terms of those in (2.30). A simple

but interesting generalization of this single dual-giant is obtained from the one in (2.47)

by rotating (Φ0,Φ1,Φ2) with an SU(1,2)
U(2) matrix. A general element of SU(1,2)

U(2) is uniquely

specified by three complex numbers (c0, c1, c2) such that

|c0|2 − |c1|2 − |c2|2 = 1 and c0c1c2 ∈ R . (2.48)

For such a matrix (c0, c1, c2) make up the first row and takes Φ0 into c0Φ0 + c1Φ1 + c2Φ2.

Such a rotation of (2.47) gives

(c0Φ0+c1Φ1+c2Φ2)Z1 = d1 , (c0Φ0+c1Φ1+c2Φ2)Z2 = d2 , (c0Φ0+c1Φ1+c2Φ2)Z3 = d3 .

(2.49)

This solution has five independent complex parameters and generically has just 2 super-

symmetries in common over the five parameter space, even though at a given point on the

parameter space the dual-giant is 1/2-BPS.

2.3 Giant solutions

We now turn to exhibiting some important known solutions to the BPS equations in (2.22)

for giant gravitons. Again as a check of our BPS equations (2.22) describing the giant

gravitons we will first show how to recover the giant graviton solutions of [7, 15, 29].
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2.3.1 (S1, S2, J1) giant

For this we choose the static gauge φ0 = τ , β = σ1, ξ2 = σ2, ξ3 = σ3 and treat the remain-

ing coordinates r, θ, φ1, φ1, α, ξ1 as functions of τ . Then the pull-backs of the space-time

frame read

e
0 =

[
lV − r2

l
(cos2 θ φ̇1 + sin2 θ φ̇2)

]
dτ , e

1 =
ṙ

V 1/2
dτ , e

2 = rθ̇ dτ,

e
3 = rV 1/2[1 − cos2 θ φ̇1 − sin2 θ φ̇2]dτ , e

4 = r cos θ sin θ (φ̇1 − φ̇2)dτ ,

e
5 = lα̇ dτ , e

6 = l cosα dσ1 , e
7 = l cosα sinα(ξ̇1 dτ − sin2 σ1 dσ2 − cos2 σ1 dσ3) ,

e
8 = l cosα cos β sin β (dσ2 − dσ3) , e

9 = l[sin2 α ξ̇1 dτ + cos2 α(sin2 β dσ2 + cos2 β dσ3)] .

Substituting these into the last of the equations (2.22) requires us to put α̇ = 0 which

means e
5 = 0. Using this it follows that the first of (2.22) is satisfied identically. Then the

equations (e0+e
9)∧ω∧{E1,E2} = 0 in the third line of (2.22) can be seen to be equivalent to

ṙ = θ̇ = 0 , φ̇1 = φ̇2 = φ̇0 = 1 . (2.50)

Using the equations (e0 + e
9) ∧ ω ∧ {E5,E6} = 0 we find that ξ̇1 = −1. It is simple to

verify that the equations in the second line of (2.22) are also satisfied. Thus we recover

the equations derived in [7] for these (S1, S2, J1) giants. The solution to these equations

can be written as

r = r(0) , θ = θ(0) , φ1 = φ
(0)
1 + τ , φ2 = φ

(0)
2 + τ , α = α(0) , ξ1 = ξ

(0)
1 − τ (2.51)

with the six parameters {r(0), θ(0), φ
(0)
1 , φ

(0)
2 , α(0), ξ

(0)
1 } as in [7].

2.3.2 (J1, J2, J3) Mikhailov giants

The solutions analogous to the wobbling dual-giants of the BPS equations for the giant

gravitons lead to the well known Mikhailov solutions [5]. Let us derive this explicitly. In

the differential constraint (2.33), we assume now that the following pullback conditions are

trivially satisfied:

E1 = E2 = 0 . (2.52)

Repeating the procedure followed for the dual-giants lead to the differential equations

Fα + i
(
cotαFξ1 − tanα(Fξ2 + Fξ3)

)
= 0

Fβ + i
(
cot β Fξ2 − tan β Fξ3

)
= 0

∑

i=0,1,2

Fφi
−
∑

i=1,2,3

Fξi
= 0 . (2.53)

The pullback conditions (2.52) are solved by

Φ1/Φ0 = Φ2/Φ0 = 0 . (2.54)
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Since Φ0 6= 0, this fixes Φ0 to be a pure phase. Using this, the equations in (2.53) are

solved by

F =
∑

m1,m2,m3

Dm1,m2,m3(φ0)(sinα)m1(cosα sinβ)m2(cosα cos β)m3eim1ξ1+im2ξ2+im3ξ3 = 0 ,

(2.55)

where

Dm1,m2,m3(φ0) = ei(m1+m2+m3)φ0 . (2.56)

Rewriting this in terms of the complex variables Zi and Φi, we find that the solution to

the differential constraint is a holomorphic function of the form

F (Φ0Z1,Φ0Z2,Φ0Z3) = 0 , Φ1/Φ0 = Φ2/Φ0 = 0 . (2.57)

This is precisely Mikhailov’s solution since Φ0 is just given by the phase ei
t
l . A simple

generalization of Mikhailov giants is obtained by letting them move along a generic time-

like geodesic in AdS5 used in [7]. These can be written as

F (ei
τ
l Z1, e

i τ
l Z2, e

i τ
l Z3) = 0 , e−i τ

l Φa = Φ(0)
a (2.58)

intersected with AdS5 × S5 where Φ
(0)
a are constants. We do not expect these to be the

most general giants either even though they carry all charges (S1, S2, J1, J2, J3).

A 1/2-BPS (S1, S2, J1, J2, J3) giant. The simplest example of the giants in (2.58) are

those in (2.51) which can be written as

Φ0Z1 = c0 , Φ1Z1 = c1 , Φ2Z1 = c2 . (2.59)

The parameters have to satisfy |c0|2 − |c1|2 − |c2|2 ≥ 0. These carry non-zero charges

(S1, S2, J1). They are half-BPS at any point in their parameter space but are only guar-

anteed to share (at least) four supersymmetries among them as we move over the param-

eter space.

As for the dual-giants we can generalize these further by adding four more parameters

into a set of 5 (complex) dimensional space of solutions by rotating the ones in (2.59) by a

matrix in SU(3)
U(2) . Notice that one can uniquely specify a matrix in SU(3)

U(2) by three complex

numbers (d1, d2, d3) with the conditions

|d1|2 + |d2|2 + |d3|2 = 1 and d1d2d3 ∈ R . (2.60)

This takes Z1 into d1Z1 + d2Z2 + d3Z3 so that the solution (2.59) becomes

Φ0(d1Z1 +d2Z2 +d3Z3) = c0, Φ1(d1Z1 +d2Z2 +d3Z3) = c1, Φ2(d1Z1 +d2Z2 +d3Z3) = c2.

(2.61)

This solution represents a single giant still that carries all charges (S1, S2, J1, J2, J3). Again

at a given point in this parameter space the solution is half-BPS. However as one varies

over the parameter space they share two (or more) supersymmetries among them.
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Relation to Kim-Lee equations. We would now like to make a general observation

on the general 1/16-BPS solutions to the BPS equations. The BPS equations lead to the

solution that we restrict to holomorphic functions of the Φi and Zj. However, there is one

addition constraint, given by the last of the equations in (2.36). In terms of the Φi and the

Zj , this can be rerwritten as

∑

i=0,1,2

(
Φi
∂F

∂Φi
− Φ̄i

∂F

∂Φ̄i

)
−


 ∑

i=1,2,3

Zi
∂F

∂Zi
− Z̄i

∂F

∂Z̄i


 = 0 . (2.62)

If we restrict to holomorphic functions F (Φi, Zj), as demanded by the remaining BPS

equations, this equation reduces to

∑

i=0,1,2

Φi
∂F

∂Φi
−
∑

i=1,2,3

Zi
∂F

∂Zi
= 0 . (2.63)

Thus, we recover the result derived in [8] that the vector (Φ0,Φ1,Φ2,−Z1,−Z2,−Z3) be

tangential to the holomorphic surface in C
1,2×C

3, whose intersection with AdS5×S5 gives

the world-volume of the giant graviton.

2.4 Charges

In this section, we continue our analysis of the classical solutions we have described so

far and obtain the momentum densities and associated charges corresponding to those

solutions. We will restrict attention to dual-giants in what follows; the discussion for the

Mikhailov giants proceeds along very similar lines. We work with the Lagrangian

L = LDBI + LWZ , (2.64)

where LDBI refers to the Dirac-Born-Infeld action

LDBI = −TD3

√
− det

i,j
hij . (2.65)

Here, TD3 is the tension of the D3-brane TD3 = 1
(2π)3α′2gs

, which, using the relation

4πgsN = l4

α′2 , can be written as TD3 = N
2π2l4

. As the relevant part of the 4-form is

C(4) = − tanh ρ e0234, the Wess-Zumino part of the lagrangian is

LWZ = −TD3 tanh ρ e
0234. (2.66)

We will compute the general expression for the momentum densities in terms of 3-forms

by taking derivatives with respect to the vielbeins:

pa =
∂L
∂e

a
. (2.67)

Once these are computed, the momentum densities are obtained by using

pµ = eaµ pa . (2.68)
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The pa are written as sums of 3-forms whose coefficients are constrained by the BPS

equations. We refer the reader to appendix A for the details of the computation. A

straightforward computation leads to the following expressions for the momentum densities

of dual-giants.

p1 =
N

2π2l4
(e124 − e

093)

p2 = − N

2π2l4
(e094 + e

123) +
N

2π2l4
tanh ρ e

034

p3 =
N

2π2l4
(e091 − e

234) − N

2π2l4
tanh ρ e

024

p4 =
N

2π2l4
(e092 + e

134) +
N

2π2l4
tanh ρ e

023

p9 =
N

2π2l4

[
e
0 ∧ (e13 + e

24) −
∣∣∣∣
a0

a1

∣∣∣∣
2

(e0 + e
9) ∧ e

24

]

p0 =
N

2π2l4

[
−e

9 ∧ (e13 + e
24) −

∣∣∣∣
a0

a1

∣∣∣∣
2

(e0 + e
9) ∧ e

24

]
− N

2π2l4
tanh ρ e

234 . (2.69)

Here, a0, a1 and a2 are defined in appendix A and arise from the differential constraint

a0E
0 + a1E

1 + a2E
2 = 0 (2.70)

that follows from the polynomial equation which defines the dual-giant. The integral of

these momentum densities over the spatial part of the D-brane world-volume gives us

the conserved charges carried by the D-brane. We will discuss several examples in the

sections below.

(J1, 0, 0) dual-giants. Let us apply the general formulae we have obtained to the well

studied case of a single 1/2-BPS dual-giant which is described by the polynomial equations

f(Yi) = Φ0Z1 − c0 = 0 and Z2/Z1 = Z3/Z1 = 0 . (2.71)

This leads to the differential condition (2.70) with

a0 = i a1 = tanh ρ and a2 = 0 . (2.72)

Requiring that the dual-giant is point-like in the S5 direction, the differential constraints

simplify to

dρ = 0 and dφ0 = −dξ1 = dτ . (2.73)

Choosing the ansatz appropriate to the spherical dual-giant,

θ = σ1 φ1 = σ2 φ2 = σ3 , (2.74)

we find that the non-zero one-forms, when pull-backed onto the world-volume, take the form

e
0 = cosh2 ρdσ0 − sinh2 ρ(cos2 σ1dσ2 + sin2 σ1dσ3) e

2 = sinh ρdσ1 e
9 = −dσ0

e
3 = sinh ρ cosh ρ(dσ0 − cos2 σ1dσ2 − sin2 σ1dσ3 e

4 = sinh ρ cos σ1 sinσ1(dσ2 − dσ3) .

(2.75)
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Using these pull-backs, we now compute the charges associated to the dual-giant; these are

computed by integrating the momentum densities in (2.69) over the spatial section spanned

by {σ1,2,3}. The relevant spatial parts of the momentum densities take the form

p1 = p2 = p4 = 0 (p3)123 = − N

2π2

sinh3 ρ

cosh ρ
sinσ1 cos σ1

(p0)123 =
N

2π2
sinh2 ρ sinσ1 cos σ1 (p9)123 =

N

2π2
sinh2 ρ sinσ1 cos σ1 . (2.76)

Now, the physically relevant momentum densities are obtained by a linear change of vari-

ables between the vielbein ea and the differentials dXµ. The spatial components of the

momentum densities are given by

pr = pθ = 0

pφ0 = (cosh2 ρ) p0 + (sinh ρ cosh ρ) p3 =
N

2π2
sinσ1 cos σ1 sinh2 ρ

pφ1 = − sinh2 ρ cos2 θ p0 − sinh ρ cosh ρ cos2 θ p3 + sinh ρ sin θ cos θ p4 = 0

pφ2 = − sinh2 ρ sin2 θ p0 − sinh ρ cosh ρ sin2 θ p3 − sinh ρ sin θ cos θ p4 = 0

pξ1 = p9 =
N

2π2
sinσ1 cos σ1 sinh2 ρ . (2.77)

Integrating over the spatial section, we find that the only non-zero charges are given by

the energy and the angular momentum along the α = π
2 circle of the S5. They satisfy

the relation

E = Pξ1 = N sinh2 ρ = N(|c0|2 − 1) . (2.78)

In the last line, we have written the momenta in terms of the variables appearing in the

defining equation of the dual-giant.

(J1, J2, J3) dual-giant. Let us generalize a little and compute the charges of a dual-

giant described by the equations

Φ0Z1 = d1, Φ0Z2 = d2, Φ0Z3 = d3 . (2.79)

The round S3 ansatz that was used in the previous example is still valid; the only difference

being that α and β take arbitrary values. All the momenta pa = ∂L
∂e

a computed in that

section remain the same as before. However, because α 6= π
2 anymore, the coordinate

momenta change; using the appropriate vielbeins, and integrating over the spatial sections

as before, we now find the following non-zero momenta

Pξ1 = sin2 αP9 = N sinh2 ρ sin2 α = N

(
|~d|2 − 1

|~d|2

)
|d1|2

Pξ2 = cos2 α sin2 β P9 = N sinh2 ρ cos2 α sin2 β = N

(
|~d|2 − 1

|~d|2

)
|d2|2

Pξ3 = cos2 α cos2 β P9 = N sinh2 ρ cos2 α cos2 β = N

(
|~d|2 − 1

|~d|2

)
|d3|2 , (2.80)
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where, in the last equality, we have expressed the momenta in terms of the coefficients

appearing in the defining equations. The BPS equation now reads

E = Pξ1 + Pξ2 + Pξ3 = N
(
|~d|2 − 1

)
. (2.81)

The general expression for the momenta that have been obtained for the dual-giants can

also be similarly derived for the giant gravitons and the analogous computations carried

out for the Mikhailov giants as well as the (S1, S2, J1) giants. Our computations match the

already existing results in the literature.

3 Symplectic structure for wobbling dual-giants

In the rest of this paper we would like to restrict ourselves to dual-giants, more specifi-

cally, to the 1/8-BPS dual-giant configurations with charges (S1, S2, J1). We would like to

quantize the space of these solutions and see if it reproduces the answers found in [7] using

the language of giant gravitions with charges (S1, S2, J1). In this section we would like to

propose that the configuration space of wobbling dual-giants with charges (S1, S2, J1) is a

hyperbolic version of the complex projective space, with the symplectic structure given by

the Kähler form on C̃P
m

. However, before we proceed further we need to discuss the issue

of the upper limit on the number of dual-giants.

3.1 Stringy exclusion principle

An important difference between the 1/2-BPS giants and dual-giants is the way they realize

the “stringy exclusion principle”. For the giant gravitons it manifests itself as the upper

limit on the angular momentum J1 of any given giant, and is given by N [2]. For the dual-

giants it appears as the upper limit on the total number of dual-giants, once again given

by N [7] (see also [14, 30]). It is important to understand how to impose this condition

for the more general dual-giants constructed in previous section. Here we make a concrete

proposal on how to implement the stringy exclusion principle for the wobbling dual-giants.

For this we will start by considering the 1/2-BPS dual-giants which are given by

F (Z1Φ0) = 0 and Z2/Z1 = Z3/Z1 = 0 . (3.1)

The condition that we can have at most N dual-giants can be incorporated in this language

by taking f(Φ0Z1) to be a polynomial of order N , i.e.,

F (Φ0Z1) = a0 + a1 Φ0Z1 + a2 (Φ0Z1)
2 + · · · + aN (Φ0Z1)

N = 0. (3.2)

This simply follows from the fact that the polynomial (3.2) can be factorized uniquely into

(at most) N factors. Each such factor, equated to zero, is interpreted as a single dual-

giant, from which it follows that an upper limit on the degree of the polynomial bounds

the number of dual-giants.

For the more general dual-giants it is not obvious how to implement this condition

as they do not have simple interpretation as a configuration of non-intersecting (distinct)

dual-giants. Here we propose that for the dual-giants of (2.45) with (S1, S2, J1) quantum
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numbers the stringy exclusion principle is implemented by restricting the degree of the

variable Φ0Z1 in the polynomial F (Φ0Z1,Φ1Z1,Φ2Z1) to N :

Z2/Z1 = Z3/Z1 = 0,

F (Φ0Z1,Φ1Z1,Φ2Z1) =

N∑

k=0

(Φ0Z1)
k ak(Φ1Z1,Φ2Z1) = 0 (3.3)

where we can further write

ak(Φ1Z1,Φ2Z1) =
∞∑

i,j=0

ckij (Φ1Z1)
i(Φ2Z1)

j. (3.4)

It clearly is consistent with the 1/2-BPS ansatz (3.2) and simply amounts to generalizing

it by making the constant coefficients in (3.2) functions of Φ1Z1 and Φ2Z1. However, this

proposal needs further justification. We will quantize the solution set (3.3) later on and

check that we reproduce the partition function for (S1, S2, J1) giants obtained in [7].

3.2 Symplectic structure

We have all the tools necessary to directly compute the symplectic structure on the con-

figuration space of wobbling dual-giants. In [10] the authors used the covariant methods

discussed in [27, 28] to find the configuration space of Mikhailov giant gravitions. We will

use these methods in what follows. The basic idea is to identify the classical phase space

with the space of classical solutions M. The central quantity of interest is the tangent

vector at a given point in M. In our case, we are considering the theory on the D3 brane,

so the four world-volume coordinates σi play the role of the spacetime coordinates while

the embedding coordinates xµ and the corresponding momenta pµ play the role of fields.

Given a point (x, p) on M, which corresponds to a classical configuration that solves the

equations of motion, we will denote the tangent vectors at this point by δx and δp. These

lead to infinitesimal variations of the given classical solution that do not take it away from

the space of solutions. δx (or δp) evaluated at a given σi is, of course, a number. The trans-

formation from δx to δx(σ) therefore corresponds to a one-form on the space of classical

solutions, which we denote by the same symbol δx(σ). One can also make higher p-forms

by wedging together such one-forms.

These one-forms can be used to define a symplectic current [27], which in turn, can

be used to obtain the necessary symplectic form on phase space. Once we have computed

the momenta for a given classical solution, the symplectic form on phase space is simply

given by

ω =

∫

Σ
d3σ δpµ(σ) ∧ δxµ(σ) . (3.5)

We would like to compute this symplectic structure on the configuration space of wobbling

dual-giants. The wobbling dual-giant solution (3.3) has infinitely many complex parameters

cn0n1n2 where 0 ≤ n0 ≤ N and 0 ≤ n1, n2 < ∞. As in [10] for Mikhailov giants we

introduce a regulator m + 1 as the number of (arbitrarily chosen) monomials Φn0
0 Φn1

1 Φn2
2

that appears in the power series of F (Φ0,Φ1,Φ2). The corresponding polynomial will have
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m + 1 coefficients and multiplying them by a non-zero complex number does not change

the solution. Therefore as in [9, 10] one expects the parameter space of the wobbling

dual-giants also to be a complex projective space. We propose that it is actually given

by a hyperbolic projective space C̃P
m

. As evidence towards this conjecture we will now

compute the moduli space for two special cases of 1/8-BPS wobbling dual-giants:

• The 1/2-BPS dual-giants in (3.2). We argue that moduli space in this case is C̃P
N

with each of its inhomogeneous coordinates being charged under the generator cor-

responding to the charge J1,

• The 1/8-BPS linear polynomial in (2.49) with d1 = d, d2 = d3 = 0. We show that it

has the moduli space C̃P
3

with the three inhomogeneous coordinates carrying a unit

of charges S1, S2 and J1 each.

3.2.1 1/2-BPS dual-giants

We begin with the 1/2-BPS dual-giants with the non-zero J1 charge. These are described

by the defining equaitons

f(Φ0Z1) =

N∑

k=0

ak (Φ0Z1)
k = 0 and Z2/Z1 = Z3/Z1 = 0 . (3.6)

For the linear polynomial of case, f(Φ0Z1) = Φ0Z1 − c0, the phase space was computed

in [7]. We will rederive this result using a different method. The momentum densities for

this configuration have already been computed in the previous section, the only non-zero

charge comes from the momentum density along the ξ1 direction

(pξ1)123 =
N

2π2
sinh2 ρ sinσ1 cos σ1 =

N

2π2
(|c0|2 − 1) sin σ1 cos σ1 , (3.7)

where we have expressed ρ in terms of the parameters appearing in the defining equation.

Prior to computing the symplectic form ω, let us compute the one-form θ, whose derivative

is ω = dθ. Since pρ = 0, we get the simple expression

θ =

∫

Σ
pξ1δξ1 . (3.8)

So it remains to compute the variation δξ1. From the defining equation, it is not difficult

to see that

δξ1 =
1

2i

(
δc0
c0

− δ̄c0
c̄0

)
. (3.9)

After performing the integral over the spatial section of the dual-giant, θ is then given by

θ =
N

2i
(|c0|2 − 1)

(
δc0
c0

− δ̄c0
c̄0

)
. (3.10)

Differentiating, we obtain the symplectic form on the configuration space of the single

1/2-BPS dual-giant:

ω = −iN δc̄0 ∧ δc0 . (3.11)
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Since |c0| > 1, we see that the symplectic form coincides with that on the outside of a disk

of unit radius in the complex plane.

The configuration space of 1/2- BPS dual-giants was also computed in [7], so let us

try to compare the two results. It was shown in that reference that the supersymmetry

constraints made the configuration space into a reduced phase space. Using the Dirac

brackets the symplectic structure was found to be

ω = −iN δζ̄ ∧ δζ where ζ = r0 e
i ξ

(0)
1 . (3.12)

In terms of the coordinates of AdS5 × S5, the parameter c0 is given by (we set l = 1 in all

computations from here)

c0 =
√
r20 + 1 ei ξ

(0)
1 (3.13)

where r0 is the position of the dual-giant in the radial position in AdS5 and ξ
(0)
1 is the

position of the dual-giant in the ξ1 direction at τ = 0. Given this, it is easy to see that this

symplectic structure, rewritten in terms of the variables c0 using

ζ =
c0
|c0|
√

|c0|2 − 1 (3.14)

remains form invariant and is given by (3.11), with the restriction that |c0| > 1. Thus we

conclude that the configuration space of a single 1/2-BPS dual-giant is a copy of C
1.

Now, let us turn to the multiple dual-giant case with

f(Φ0Z1) =
N∏

i=1

(Φ0Z1 − c
(i)
0 ) = 0 . (3.15)

The key point to note is that, in this case, one has to sum over the N zeroes of f(Φ0Z1).

Following this prescription one finds that the full symplectic form is given by

ω = −iN
N∑

i=1

δc̄
(i)
0 ∧ δc(i)0 . (3.16)

Therefore the configuration space of the 1/2-BPS polynomial is the symmetrized product

of the N copies of the configuration space of a single 1/2-BPS dual-giant. However, in

order to generalize this discussion to the 1/8-BPS dual-giants, it would be useful to give

a slightly different description of the configuration space. We will now argue that this

configuration space (C1)N/SN of 1/2-BPS dual-giants can be mapped onto the hyperbolic

space C̃P
N

.

Before we turn to this we will present a useful coordinate transformation. We will

show that (i) C
m can be mapped onto C̃P

m
and (ii) the interior of the unit disc in C

m can

be mapped onto a CP
m such that the standard Kähler form on C

m gets mapped onto the

Fubini-Study 2-form on the respective Kähler manifolds. Let us begin with the standard

Kähler form on C
m:

ω = −i
m∑

i=1

δζ̄i ∧ δζi. (3.17)
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Consider the change of variables

ζi = bi
√
f(|b|2) , (3.18)

where |b|2 = |b1|2 + · · · + |bN |2. Then, we get the differential conditions

δζi = δbi
√
f(|b|2) +

f ′(|b|2)
2
√
f(|b|2)

bi δ(|b|2)

δζ̄i = δb̄i
√
f(|b|2) +

f ′(|b|2)
2
√
f(|b|2)

b̄i δ(|b|2) . (3.19)

Substituting these into the symplectic form (3.17) and using

δ(|b|2) =
∑

i

(biδb̄i + b̄iδbi) , (3.20)

we get

ω = −iN


f(|b|2)

∑

i

δbi ∧ δb̄i + f ′(|b|2)
∑

i,j

b̄ibjδbi ∧ δb̄j


 . (3.21)

Consider now two choices for f(b), given by

f±(|b|2) =
1

1 ± |b|2 (3.22)

When f = f+, we see that we have obtained the Kähler form on the complex projective

space CP
m while for f = f−, we get the Kähler form on the negatively curved hyperbolic

space C̃P
m

. Moreover, from (3.18), we see that it is only the unit disc in C
m that gets

mapped onto the positively curved CP
m while the entire C

m is mapped onto C̃P
m

using

this change of variables.

Now we return to the 1/2-BPS dual-giant configuration space. Consider each factor

Φ0 = c
(i)
0 in the half-BPS polynomial at a time. The coordinates c

(i)
0 are such that |c(i)0 | ≥ 1.

We make the change of coordinates

c
(i)
0 → ζi =

c
(i)
0√

1 − |c(i)0 |2
(3.23)

so that ζi is a coordinate on C
1. Now we introduce a regulator |ζi| ≤ r for each ζi. We

can map the remaining disc into a copy of CP
1 using the map above with negative sign

for N = 1. Then we have the configuration space of the 1/2-BPS dual-giants, with the

regulator in place, to be (CP
1)N/SN which, in turn, is equivalent to CP

N (see [10] for

instance). We can now use the inverse map in (3.18) to map the configuration space to a

disc in C
N with the standard Kähler form with the size of the disc set by the regulator

r. When we remove the regulator we end up with C
N . We can further map this C

N onto

C̃P
N

using the mapping (3.18).
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3.2.2 A single (S1, S2, J1) dual-giant

We will now start from the result we have just obtained for the simple 1/2-BPS spher-

ical dual-giant and compute the symplectic structure on the configuration space of the

6-parameter linear polynomial solution

(c0Φ0 + c1Φ1 + c2Φ2)Z1 = d , Z2/Z1 = Z3/Z1 = 0 (3.24)

with

|c0|2 − |c1|2 − |c2|2 = 1 and c0c1c2 ∈ R . (3.25)

The 1-form θ for these solutions is given by

θ =

2∑

i=0

Pφi
δφi . (3.26)

We first compute the momenta and variations in (3.26). The key point to note is that the

general linear polynomial in (3.24) can be obtained from the simple round S3 dual-giant by

an SU(1, 2)/U(2) rotation matrix. For the 1/2-BPS case defined by the equation Φ0Z1 = d,

recall that θ is given by

θ =
N

2i

(
|d|2 − 1

) (δd
d

− δd̄

d̄

)
. (3.27)

Here, we have already integrated over the volume of the round 3-sphere. Defining

~c =
(c0
d
,
c1
d
,
c2
d

)
(3.28)

we find that

|c|2 =
1

|d|2 (|c0|2 − |c1|2 − |c2|2) =
1

|d|2 . (3.29)

Furthermore, defining the SU(1, 2)-invariant form ηij = diag(+1,−1,−1), one can easily

generalize the one-form θ of the round S3 dual-giant to the corresponding one-form θ in

the configuration space of the linear polynomial:

θ = −N
2i

(
1

|c|4 − 1

|c|2
)
ηij
(
c̄i δcj − cj δc̄i

)
(3.30)

Defining the new variables

λi =

√
1 − |~c|2
|~c|4 ci for i = 0, 1, 2 , (3.31)

and recasting the one-form θ in these variables gives

θ =
iN

2
ηij
(
λ̄i δλj − λj δλ̄i

)
. (3.32)

Observe that since |d| > 1, the vector ~c always has its norm to be less than unity. This

implies that

|λ|2 = |λ0|2 − |λ1|2 − |λ2|2 > 0 . (3.33)
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This implies that the phase space for the general linear polynomial is very simply described

in the λ-variables: it is the region inside the light-cone of C
1,2 with the symplectic form

ω = iN
(
δλ̄0 ∧ δλ0 − δλ̄1 ∧ δλ1 − δλ̄2 ∧ δλ2

)
. (3.34)

The conserved charges, in these variables, are given by

Q̃i = N |λi|2 for i = 0, 1, 2 , (3.35)

which map to (E,S1, S2) respectively. The domain in C
1,2 of interest can be mapped onto

a Euclidean signature space by the following change of variables:

η0 =
|λ0|
λ0

|λ| η1 =
|λ0|
λ0

λ1 η2 =
|λ0|
λ0

λ2 . (3.36)

In terms of the ηi, one can check that the configuration space for the linear (S1, S2, J1)

dual-giant is simply C
3, with the symplectic form

ω = −iN
2∑

i=0

δη̄i ∧ δηi . (3.37)

The conserved charges, in these variables are given by

Qi = N |ηi|2 for i = 0, 1, 2 . (3.38)

and correspond to (J1, S1, S2) respectively. From this, one can easily read off the relevant

momenta of the dual-giant corresponding to the linear polynomial and rewrite them in the

original variables. We find

Pφi
= N

(
1 − |~c|2
|~c|4

)
|ci|2 for i = 0, 1, 2

3∑

i=0

ηiiPφi
= N

(
1 − |~c|2
|~c|2

)
≡ J . (3.39)

Finally we can now map the configuration space of the linear polynomial into a C̃P
3

using

the map (3.18) as promised. Defining

ηi =
1√

1 − |b|2
bi , (3.40)

the bi denote coordinates on C̃P
3
. In these variables, the symplectic form in (3.37) maps

to the Kähler form on C̃P
3
, as shown in equation (3.21). The charges, in the b-variables,

take the form
Qi

N
=

|bi|2
1 − |b|2 . (3.41)
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4 Counting wobbling dual-giants

We have derived in the previous section that the configuration space of a single dual-giant

with spins (S1, S2, J1) is the complex projective space C̃P
3

with the symplectic structure

given by the Kähler form. Similarly, for the 1/2-BPS dual-giants with (0, 0, J1), we have

shown that the configuration space is given by C̃P
N

.

For the general case, as mentioned at the beginning of section 3.2, we conjecture

that the configuration space is given by C̃P
m

with the regulator in place, in the defining

polynomial:

F (Φ0Z1,Φ1Z1,Φ2Z1) =
N∑

k=0

∞∑

i,j=0

cijk (Φ0Z1)
k(Φ1Z1)

i (Φ2Z1)
j = 0 . (4.1)

Analogous to the 1/2-BPS case discussed in appendix B.1, one can define new coordinates

bn0n2n2 with 0 < n0 ≤ N,n1, n2 ≥ 0, such that the charges of the dual-giants are given by

J1

N
= f(b)

∑

n0,n1n2

n0|bn0n2n2|2

Si

N
= f(b)

∑

n0,n1,n2

ni|bn0n2n2 |2 for i = 1, 2 , (4.2)

where

f(b) =
1

(1 −∑n0,n1n2
|bn0n2n2 |2)

. (4.3)

Note that these expressions agree with the expressions for the charges derived in (B.18) for

the 1/2-BPS case as well as equation (3.41) for the single dual giant described by a linear

polynomial. We also observe that the expressions for the charges we have written down,

apart from the restriction on n0, is similar to the expression for the (J1, J2, J3) charges

of the Mikhailov giants discussed in [10].3 The appearance of the weighted sum can be

understood by focusing on the 1/2-BPS case. The bk’s are then symmetric polynomials of

the roots of the defining polynomial. Since the individual roots have a unit charge, the kth

symmetric combination bk has charge k.

It will be desirable to have a direct way to verify whether or not the moduli space of

(S1, S2, J1) dual-giants, with the regulatorm in place, is given by C̃P
m

. We will assume that

it is given by a C̃P
m

with the standard Kähler form on it and proceed with its quantization.

This can be done in two different ways. One is to use the inverse map in (3.18) to map the

problem on to C
k. Then the holomorphic quantization is immediate with the result that the

Hilbert space is given by holomorphic functions of arbitrary degree. Taking the monomials

ψpn0n1n2
(b̃n0n1n2) :=

∏

n0n1n2

(b̃n0n1n2)
pn0n1n2 (4.4)

3In fact, one can map our wobbling dual-giants into Mikhailov giants by a double Wick-rotation that

interchanges AdS5 with S
5, at least over some subspaces of their respective parameter spaces.

– 25 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
0

to be a basis for the Hilbert space were we used b̃n0n1n2 to denote the tranformed coordi-

nates on C
k. Then the charges of these basis states are

J1 =
∑

n0n1n2

n0 pn0n1n2 , Si =
∑

n0n1n2

ni pn0n1n2 for i = 1, 2 . (4.5)

where the sums are over {0 < n0 ≤ N, 0 ≤ n1, n2 < ∞} with the regulator m in place.

When we take the regulator away the Hilbert space can be identified with that of an ar-

bitrary number of bosons in a 3-dimensional harmonic oscillator with the level numbers of

the single-particle Hilbert space labeled by {n0, n1, n2} with the restriction 0 < n0 ≤ N .

The partition function of this system can be written as

Z(q0, q1, q2) =
N∏

n0=1

∞∏

n1,n2=0

1

1 − qn0
0 qn2

1 qn2
2

. (4.6)

This matches precisely with the one obtained by counting the giants as in [7] as well as

the gauge theory answer of [24]. The second method of quantization of our problem is

to directly use the quantization of the kahler manifold C̃P
k
. This gives a Hilbert space

isomorphic to the one obtained above. See appendix B.1 for some details of this method.

It is amusing to note that the quantization of the wobbling dual-giants naturally gives

rise to a description of the Hilbert space as that of an arbitrary number of bosons in a

three dimensional harmonic oscillator, with one of the level numbers restricted to be less

than N . This is precisely the dual description used in [7] to quantize the (S1, S2, J1) giants.

This is similar to what was observed for the Mikhailov giants, whose quantization gave the

dual description in terms of N bosons in a three dimensional harmonic oscillator.

5 Discussion

In the first part of this article, we found the BPS equations for D3-branes embedded in

AdS5 × S5 that preserve two out of the full thirty-two supercharges and recovered large

classes of solutions that were studied in the literature. We then focused predominantly

on the dual-giants with charges (S1, S2, J1) and argued that their configuration space can

be mapped to the hyperbolic version of the complex projective space C̃P
m

where m is

a regulator. The description of our dual-giants is different from those considered in [8,

24] as deformations of the spherical dual-giants. We made a specific conjecture on how

to implement the stringy exclusion principle. We then argued that one can recover the

partition function of (S1, S2, J1) 1/8-BPS states computed earlier using giants [7] and

gauge theory [24]. It will be interesting to verify our conjecture on the implementation of

the stringy exclusion principle from other sources.

In what follows, we mention some connections of our work to existing literature and

point out possible avenues for future work.

Generalizations. The techniques introduced in this paper to analyze the κ-symmetry

conditions and subsequent solutions are general and can prove useful in understanding the

embedding of other extended objects in AdS5 ×S5. Our calculations in obtaining the BPS
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equations can be generalized to the case of giant gravitons in the maximally supersymmetric

AdS4 × S7 or AdS7 × S4 backgrounds of M-theory.

One can also generalize to less supersymmetric cases such as the AdS5 × Y p,q back-

grounds [31]. One expects that the generalization of the BPS equations for giants and dual-

giants in these backgrounds should be given by ones similar to (2.22), (2.23) with the Kähler

form ω on the base manifold CP
2 of S5 replaced by the Kähler form on the appropriate

base manifold of Y p,q and e9 replaced by the 1-form dual to corresponding the Reeb vector,

which generates translations along the fibre coordinate. It will be interesting to recover the

objects in [32–34] and classify and count the D3-branes with two supercharges in these back-

grounds. These objects should be relevant for the microstate counting of some of the black

holes [19] lifted to asymptotically AdS5×Y p,q solutions using [35]. Another case of interest

with less supersymmetry is to further study probe branes in the near-horizon geometries

of black holes in AdS5 × S5 [36, 37]. Some of these topics will be discussed elsewhere.

Calibrations. The equations that followed from imposing kappa-symmetry for D3 branes

led to very simple constraints on the pull-back of 4-forms in space-time. It is worthwhile

to point out that our general analysis of the kappa-symmetry equations agrees with results

obtained using rather different techniques in [26]. Irrespective of whether we are considering

giants or dual-giants, the space-time volume-form on the world-volume of the D3 brane we

have derived, after imposing the supersymmetry conditions is given by

dvol4 =
∣∣e09 ∧ (ω̃ − ω)

∣∣ . (5.1)

The embedding of the D3 brane is such that the spatial part of the world-volume turns out

to be

dvol3 =
∣∣e9 ∧ ω

∣∣ for giants, and

dvol3 =
∣∣e0 ∧ ω̃

∣∣ for dual-giants , (5.2)

where ω̃ and ω are the respective Kähler forms on C̃P
2

and CP
2 respectively. This precisely

coincides with the calibration forms obtained for the giants and dual-giants in [26] and is

a useful check of our supersymmetry analysis.

Counting and plethystics. As was mentioned in the introduction, there are dual de-

scriptions for the 1/8-BPS giants/dual-giants with a given set of quantum numbers. It turns

out that one of the two descriptions is a “free” system while the other describes an inter-

acting one. For instance, for the 1/8-BPS states with quantum numbers (J1, J2, J3), the

description in terms of the Mikhailov giants is the interacting one and the subsequent quan-

tization of the multi-giant configuration space required fairly sophisticated techniques [10].

This is in contrast with the elementary description of the (J1, J2, J3) dual-giants in [7]. Sim-

ilarly, the wobbling giants, also introduced in [7] describe a free system while the wobbling

dual-giants, studied in the present work, describes an interacting system.

We would like to make the observation that in the case when the dual free description

is available, the plethystic techniques of [38, 39] can be used to obtain the multi-particle

partition function, given the single particle partition function. For instance, the single

– 27 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
0

particle configuration space of the (S1, S2, J1) giants is given by C
2 × D, where D is the

unit disc in C. The single giant partition function is given by

Z1 =
1 + q0 + · · · + qN

0

(1 − q1)(1 − q2)
. (5.3)

This is what is denoted f∞ = g1 in [38]. Using the plethystic exponential, one can now

easily obtain the multi-giant partition function

Z∞ = PE
[
Z1

]
=

N∏

n0=1

∞∏

n1,n2=0

1

1 − qn0
0 qn2

1 qn2
2

. (5.4)

Similarly, the generating function g(ν, t) introduced in [39] can be used to obtain the grand

canonical partition function for the (J1, J2, J3) dual-giants derived in [7] using the fact that

the partition function of a single dual-giant is the same as that of a single particle in a

three dimensional harmonic oscillator. However, such techniques prove inadequate when

applied to the interacting description of the BPS states.

There remain some important questions that one has to answer in the program of

counting giants and dual-giants, we point out a few of these in what follows.

1/16-BPS states. Recently [24] has made some progress towards counting 1/16-BPS

giants building upon the work of [8]. In particular, states involving scalar fields and co-

variant derivatives have been enumerated in [24]. Ideally, one would like to compute the

1/16-BPS states in AdS5×S5 by counting giants and/or dual-giants and recover the results

of [24]. Although this is beyond the scope of this paper, we can, using the techniques in

our paper, obtain the configuration space and symplectic form for a class of dual-giants

and giants, described respectively by the equations (2.49) and (2.61). Although these are

1/2-BPS states at a given point in parameter space, they preserve only 2 supersymmetries

over the full parameter space.

The methods are very similar to the ones we employed for the (S1, S2, J1) dual-giants,

so we will only quote the answers. For the dual-giants described by (2.49), we find that the

10-dimensional configuration space of a single dual-giant is given by a warped product of

C3 × C̃P
2
. Similarly, for the single giant of (2.61), we find that the configuration space is

a warped product of CP
3 × C̃P

2
. It remains to be seen whether one can try and generalize

this and recover the results of [24].

EM waves. It has been shown in [40] that there are giant gravitons with world-volume

electro-magnetic fields turned on. Similarly there are supersymmetric dual-giant gravitons

with electro-magnetic fields [37]. Their dual descriptions are as yet unknown. The dual

description of giants with EM fields are not given by the dual-giants with EM fields. The

giants with EM waves preserve the SO(4) symmetry coming from the AdS5 part of the

geometry, just as those giants without the EM fields, whereas the dual-giants with EM

fields break this symmetry. This suggests that one should consider higher dimensional

branes such as D5-branes which preserve the same isometry as the configuration of giants

or dual-giants with EM fields. Our techniques should be useful in analyzing, generalizing

and classifying the solutions of [37, 40] as well as their duals [41].
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A Computation of charges

In order to get compact expressions for the momentum densities, it will be easiest to work

with the complex and real forms introduced earlier in (2.10) and (2.11). For dual-giants,

recall that the pullback onto the world-volume of the following forms are zero:

E5 = E6 = 0 (A.1)

In terms of the remaining combinations of 1-forms, the determinant of the induced metric

on the world-volume is given by

− deth =
1

4
|E00̄12|2 +

1

16
|E00̄(E11̄ + E22̄)|2

+
1

4

[
|e0 ∧E122̄|2 + |e0 ∧ E211̄|2 − |e9 ∧ E122̄|2 − |e9 ∧ E211̄|2

]
− |E11̄22̄|2 . (A.2)

Classically, the D3-brane with spins (S1, S2, J1) is described by the equation

f(Y0, Y1, Y2) = 0 where Yk = ΦkZ1 k ∈ {1, 2, 3} . (A.3)

This leads to conditions on the pull-backs of the bulk 1-forms. We have the relation

[tanh ρ f0Y0 + coth ρ (f1Y1 + f2Y2)](e
1 − ie3) − 1

sinh ρ
[tan θ Y1f1 − cot θ Y2f2](e

2 − ie4)

+i[Y0f0 + Y1f1 + Y2f2](e
0 + e

9) = 0 . (A.4)

This is just a rewriting of (2.33) in terms of Yk-derivatives. Let us write this equation as

a0E
0 + a1E

1 + a2E
2 = 0 . (A.5)

Its conjugate then reads

ā0E
0 + ā1Ē

1 + ā2Ē
2 = 0 . (A.6)

since E0 is real (note that Ē0 = e
0−e

9 is not the complex conjugate of E0). Then it is easy to

see that the pull-backs of the following 4-forms constructed out of {E0, Ē0,E1, Ē1,E2, Ē2}
vanish identically:

E00̄12 = E00̄1̄2̄ = E011̄2 = E011̄2̄ = E0122̄ = E01̄22̄ = E11̄22̄ = 0 . (A.7)

All the remaining eight 4-forms can be written in terms of just one of them as follows:

E00̄12̄ = − ā1

ā2
E00̄11̄, E00̄1̄2 =

a1

a2
E00̄11̄, E00̄22̄ =

∣∣∣∣
a1

a2

∣∣∣∣
2

E00̄11̄, E0̄11̄2̄ =
ā0

ā2
E00̄11̄

E0̄11̄2 =
a0

a2
E00̄11̄, E0̄1̄22̄ =

a1ā0

|a2|2
E00̄11̄, E0̄122̄ =

a0ā1

|a2|2
E00̄11̄. (A.8)
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We have similar relations among the 3-forms. Out of all the possible twenty 3-forms that

can be written out of the available 1-forms only E012 and E01̄2̄ vanish. Proceeding along

similar lines, one can write the remaining 3-forms in terms of the five independent ones

{E011̄,E022̄,E0̄01,E0̄01̄,E0̄11̄}.
To compute the momenta, we need the derivatives of the Lagrangian with respect to

the vielbeins. Let us do a sample computation to illustrate a few points

δ

δE1
(− deth) = −1

8

(
E00̄11̄ + E00̄22̄

)
E00̄1̄ (A.9)

+
1

4

[
−(e0 ∧ E22̄)(e0 ∧ E1̄2̄2)+(e9 ∧ E22̄)(e9 ∧ E1̄2̄2)+(e0 ∧ E21̄)(e0 ∧ E2̄1̄1)

−(e0 ∧ E211̄)(e0 ∧ E2̄1̄) − (e9 ∧ E21̄)(e9 ∧ E2̄1̄1) + (e9 ∧ E211̄)(e9 ∧ E2̄1̄))
]
.

Using the BPS equations, one can write

e
9 ∧E1̄2̄2 = −e

0 ∧ E1̄2̄2 . (A.10)

Substituting this into the above expression and using e
0 with 1

2(E0̄ + E0), we get

δ

δE1
(− deth) =

[
−1

8

(
E00̄ ∧ (E11̄ + E22̄)

)
E00̄1̄

+
1

8

[
−E022̄(E0̄1̄2̄2) + E021̄(E0̄2̄1̄1) − E02̄1̄(E0̄211̄)

]]
. (A.11)

Now, observe that the last term in the above equation is zero since E0, E1̄ and E2̄ are

linearly dependent. Using the relations between the various 3-forms and 4-forms and the

expression for the determinant with the BPS equations are imposed,

√
− det h = e

09 ∧ (e13 + e
24) =

i

4
(E00̄11̄ + E00̄22̄) , (A.12)

one can check that the above derivative can be re-written as

1√
− deth

δ

δE1
(− deth) =

i

2

(
E00̄1̄ + E1̄22̄

)
. (A.13)

Similar expressions can also be derived for the other derivatives. The contribution to the

momenta from the WZ part of the action can be easily computed since it is a simple wedge

product of the vielbeins. Restricting attention to only the DBI part of the action, and

using the definition of the momenta,

Pa = − N

4π2l4
1√

− deth

δ

δEa
(− deth) , (A.14)

we obtain the following expressions for the momenta:

P1 = − iN

8π2l4
E1̄ ∧ (E00̄ + E22̄)

P2 = − iN

8π2l4
E2̄ ∧ (E00̄ + E11̄)

P0̄ = (p0 − p9) =
iN

4π2l4
E0 ∧ (E11̄ + E22̄)

P0 = (p0 + p9) =
iN

4π2l4

[
−E0̄ ∧ (E11̄ + E22̄) + E0 ∧

(∣∣∣∣
a0

a2

∣∣∣∣
2

E11̄ +

∣∣∣∣
a0

a1

∣∣∣∣
2

E22̄

)]
(A.15)
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These can be very simply related to the derivatives of the Lagrangian with respect to

the real one-forms e
a by taking linear combinations of the complex momenta. Combining

this with the contribution from the WZ piece, we obtain the real momenta written out in

the text.

B Hyperbolic complex projective space C̃P
m

The hyperbolic versions of the complex projective space can be defined as the set of rays in

C
1,N . One can check that this space is a Kähler manifold. We start with the coordinates

{Φ0,Φ1, . . . ,Φm} on C
1,m and define the new variables

ξ = Φ0 · · ·Φm bk =
Φk

Φ0
with k = 1, . . . ,m . (B.1)

and the inverse transformations

Φm+1
0 =

ξ

b1 · · · bm
Φm+1

k =
ξ

b1 · · · bm
bm+1
k for k = 1, . . . ,m. (B.2)

These imply the differential conditions

dΦ0

Φ0
=

1

m+ 1

[
dξ

ξ
−

m∑

k=1

dbk
bk

]

dΦk

Φk
=
dΦ0

Φ0
+
dbk
bk

∀ k ∈ {1, . . . ,m}. (B.3)

We will now impose the conditions

|Φ0|2 − |Φ1|2 − · · · − |Φm|2 = 1 and (Φ0Φ1 · · ·Φm) ∈ R. (B.4)

to obtain the complex hyperbolic space C̃P
m

. Using these conditions we can write ξ in

terms of bk as

ξ =
|b1 · · · bm|

(1 −∑m
p=1 |bp|2)

m+1
2

. (B.5)

Using this we can write

dξ

ξ
=

1

2

(
1 +

m+ 1

1 −∑m
p=1 |bp|2

|bk|2
)(

db̄k
b̄k

+
dbk
bk

)
. (B.6)

Now, the Kähler form on C̃P
m

is inherited from that on C
1,m:

ωfCP
m = −i dΦ̄a ∧ dΦb η

ab (B.7)

where ηab = diag{−1,+1, . . . ,+1}. Using the differential conditions obtained earlier, this

works out to be

ωfCP
m = −i

[
δmn +

bmb̄n
1 −∑m

p=1 |bp|2

]
db̄m ∧ dbn

1 −∑m
p=1 |bp|2

(B.8)

which can be seen to be the Kähler form generated from the Kähler potential

K = − ln(1 −
m∑

p=1

|bp|2) , (B.9)

with ωfCP
m = −i ∂m̄∂nK db̄m ∧ dbn.
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B.1 Geometric quantization of C̃P
m

We will be very brief in this section and refer the reader to [42] for a general discussion of

geometric quantization, in particular, holomorphic quantization of Kähler manifolds.

We start directly with the symplectic 2-form of interest on C̃P
m

, which is given by

ω = −iN 1

(1 − |b|2)

(
δij +

bi b̄j
1 − |b|2

)
db̄i ∧ dbj , (B.10)

where |b|2 =
∑m

p=1 |bp|2. This is N times the symplectic form in (B.8). We choose to work

with holomorphic polarization

Db̄i
φ(bi, b̄j) = 0 (B.11)

where φ(bi, b̄j) are the wave-functions. Then the adapted Kähler gauge potential is

θ = −iN b̄i
1 − |b|2 dbi (B.12)

and the Kähler potential is K = −N ln(1− |b|2) so that θ = −i∂bK db. Then the covariant

derivative (Dj = ∂j − i θj with ~ set to unity) Db̄ is simply ∂b̄ and

Dbi
= ∂bi

− N b̄i
1 − |b|2 . (B.13)

The Kähler form ω is treated as an anti-symmetric matrix; it is non-degenerate and the

inverse matrix, which is essential to define the Poisson brackets of functions on classical

phase space, is given by

ωb̄ibj =
i

N
(1 − |b|2)(δij − b̄ibj) . (B.14)

The prescription for geometric quantization [42] is to map functions on phase space to

operators, with the map

f → i ∂if ω
ij Dj + f (B.15)

These are thought of as acting on the states in the Hilbert space (or wavefunctions) which

satisfy the polarization condition Db̄φ = 0. Substituting the explicit expression for the

inverse of the Kähler form, the map from functions to operators takes the form

f → 1

N

∑

i,j

∂b̄i
f(1 − |b|2)(δij − b̄ibj)

(
∂

∂bj
− Nb̄j

1 − |b|2
)

→ 1

N
(1 − |b|2)


∑

i

∂b̄i
f
∂

∂bi
−
∑

i,j

b̄i∂b̄i
f bj

∂

∂bj
−N

∑

i

b̄i∂b̄i
f


 (B.16)

In computing the partition function for the 1/2-BPS dual-giants, it is necessary to find

the differential operator representation of the angular momentum J1. In terms of the ζ-

variables defined in (3.17) describing the configuration space as C
N , the classical expression

for the conserved charge J1 is given by

J1 =

N∑

k=1

k|ζk|2 . (B.17)
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Re-expressing this in terms of the b-variables using equations (3.18) and (3.22), we find that

J1(b, b̄) = N

N∑

k=1

k |bk|2
1 − |b|2 . (B.18)

The reason for the weighted sum in the expression for J1 is similar to the one given in [10];

the coordinates of C̃P
N

can be thought of as symmetric combinations of the zeroes of the

defining polynomial of degree N . So, assigning unit degree to the roots of the polyno-

mial, we see that the coordinates bk have charge k. We will verify this explicitly using

the map that takes the function J1 on phase space to an operator in the quantum theory.

Substituting (B.18) into (B.16), we get the operator

J1 →
N∑

k=1

k bk
∂

∂bk
. (B.19)

We now turn to discuss the wavefunctions and their inner-product. Since the polarization

is given by Db̄φ = 0, the wavefunctions are holomorphic in bi. A convenient basis is given

in terms of monomials

φ =
∏

i

bpi

i . (B.20)

Following the notations of [10], the function W , which is relevant for defining the inner

product is

W = e−K = (1 − |b|2)N . (B.21)

For instance, for the simple case of the poincare disc, or C̃P
1
, the norm of such a basis

element is therefore given by

〈φp, φp〉 = (N − 1)

∫

fCP
1
ω

fCP
1 φ̄p φpW

= (N − 1)

∫ 1

0
dr r2p+1(1 − r2)N−2 . (B.22)

The integral is finite for any integers p ≥ 0 and N ≥ 2. The extra factor of N − 1 is put

to ensure that one has constant wave-functions normalizable also for N = 1 case [43].

The partition function for C̃P
N

, given these wavefunctions and given the operator

expression for the angular momentum, is given by

Z = TrH e−βJ1 =

N∏

k=1

1

1 − qk
with q = e−β . (B.23)

Note that one could as well have quantized C
N and gotten the same answer.
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